No photo of Tej-eddine Ghoul

Tej-eddine Ghoul

Assistant Professor of Mathematics

    20112019

    Research output per year

    If you made any changes in Pure these will be visible here soon.

    Research Output

    2019

    Construction of type i blowup solutions for a higher order semilinear parabolic equation

    Ghoul, T. E., Van Nguyen, T. & Zaag, H., Mar 1 2019, In : Advances in Nonlinear Analysis. 9, 1, p. 388-412 25 p.

    Research output: Contribution to journalArticle

    Open Access

    On the stability of type II blowup for the 1-corotational energy-supercritical harmonic heat flow

    Ghoul, T. E., Ibrahim, S. & Nguyen, V. T., Jan 1 2019, In : Analysis and PDE. 12, 1, p. 113-187 75 p.

    Research output: Contribution to journalArticle

    2018

    Blowup solutions for a reaction–diffusion system with exponential nonlinearities

    Ghoul, T. E., Nguyen, V. T. & Zaag, H., Jun 15 2018, In : Journal of Differential Equations. 264, 12, p. 7523-7579 57 p.

    Research output: Contribution to journalArticle

    Construction et stabilité de solutions explosives pour un système parabolique sémilinéaire non-variationel

    Translated title of the contribution: Construction and stability of blowup solutions for a non-variational semilinear parabolic systemGhoul, T. E., Nguyen, V. T. & Zaag, H., Sep 2018, In : Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire. 35, 6, p. 1577-1630 54 p.

    Research output: Contribution to journalArticle

    Construction of type II blowup solutions for the 1-corotational energy supercritical wave maps

    Ghoul, T., Ibrahim, S. & Nguyen, V. T., Oct 5 2018, In : Journal of Differential Equations. 265, 7, p. 2968-3047 80 p.

    Research output: Contribution to journalArticle

    Minimal Mass Blowup Solutions for the Patlak-Keller-Segel Equation

    Ghoul, T. E. & Masmoudi, N., Oct 2018, In : Communications on Pure and Applied Mathematics. 71, 10, p. 1957-2015 59 p.

    Research output: Contribution to journalArticle

    2017

    Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term

    Ghoul, T. E., Nguyen, V. T. & Zaag, H., Oct 15 2017, In : Journal of Differential Equations. 263, 8, p. 4517-4564 48 p.

    Research output: Contribution to journalArticle

    On the stability of the Bresse system with frictional damping

    Ghoul, T. E., Khenissi, M. & Said-Houari, B., Nov 15 2017, In : Journal of Mathematical Analysis and Applications. 455, 2, p. 1870-1898 29 p.

    Research output: Contribution to journalArticle

    On Uniqueness for the Harmonic Map Heat Flow in Supercritical Dimensions

    Germain, P., Ghoul, T. E. & Miura, H., Dec 2017, In : Communications on Pure and Applied Mathematics. 70, 12, p. 2247-2299 53 p.

    Research output: Contribution to journalArticle

    Refined regularity of the blow-up set linked to refined asymptotic behavior for the semilinear heat equation

    Ghoul, T. E., Nguyen, V. T. & Zaag, H., Jan 2 2017, In : Advanced Nonlinear Studies. 17, 1, p. 31-54 24 p.

    Research output: Contribution to journalArticle

    2012
    2011

    An extension of Dickstein's "small lambda" theorem for finite time blowup

    Ghoul, T. E., Dec 1 2011, In : Nonlinear Analysis, Theory, Methods and Applications. 74, 17, p. 6105-6115 11 p.

    Research output: Contribution to journalArticle