TY - GEN
T1 - 3D Beamforming Through Joint Phase-Time Arrays
AU - Yildiz, Ozlem
AU - Alammouri, Ahmad
AU - Mo, Jianhua
AU - Nam, Younghan
AU - Erkip, Elza
AU - Zhang, Jianzhong
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - High-frequency wideband cellular communications over mmWave and sub-THz offer the opportunity for high data rates. However, it also presents high path loss, resulting in limited coverage. High-gain beamforming from the antenna array is essential to mitigate the coverage limitations. The conventional phased antenna arrays (PAA) cause high scheduling latency owing to analog beam constraints, i.e., only one frequency-flat beam is generated. Recently introduced joint phase-time array (JPTA) architecture, which utilizes both true-time-delay (TTD) units and phase shifters (PSs), alleviates analog beam constraints by creating multiple frequency-dependent beams for scheduling multiple users at different directions in a frequency-division manner. One class of previous studies offered solutions with "rainbow"beams, which tend to allocate a small bandwidth per beam direction. Another class focused on uniform linear array (ULA) antenna architecture, whose frequency-dependent beams were designed along a single axis of either azimuth or elevation direction. This paper presents a novel 3D beamforming design that maximizes beamforming gain toward desired azimuth and elevation directions and across sub-bands partitioned according to scheduled users' bandwidth requirements. We provide analytical solutions and iterative algorithms to design the PSs and TTD units for a desired subband beam pattern. Through simulations of the beamforming gain, we observe that our proposed solutions outperform the state-of-the-art solutions reported elsewhere.
AB - High-frequency wideband cellular communications over mmWave and sub-THz offer the opportunity for high data rates. However, it also presents high path loss, resulting in limited coverage. High-gain beamforming from the antenna array is essential to mitigate the coverage limitations. The conventional phased antenna arrays (PAA) cause high scheduling latency owing to analog beam constraints, i.e., only one frequency-flat beam is generated. Recently introduced joint phase-time array (JPTA) architecture, which utilizes both true-time-delay (TTD) units and phase shifters (PSs), alleviates analog beam constraints by creating multiple frequency-dependent beams for scheduling multiple users at different directions in a frequency-division manner. One class of previous studies offered solutions with "rainbow"beams, which tend to allocate a small bandwidth per beam direction. Another class focused on uniform linear array (ULA) antenna architecture, whose frequency-dependent beams were designed along a single axis of either azimuth or elevation direction. This paper presents a novel 3D beamforming design that maximizes beamforming gain toward desired azimuth and elevation directions and across sub-bands partitioned according to scheduled users' bandwidth requirements. We provide analytical solutions and iterative algorithms to design the PSs and TTD units for a desired subband beam pattern. Through simulations of the beamforming gain, we observe that our proposed solutions outperform the state-of-the-art solutions reported elsewhere.
KW - 3D
KW - beamforming
KW - joint phase-time array
KW - millimeter wave
KW - True time delay
KW - uniform planar array
UR - http://www.scopus.com/inward/record.url?scp=85213035082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85213035082&partnerID=8YFLogxK
U2 - 10.1109/VTC2024-Fall63153.2024.10757955
DO - 10.1109/VTC2024-Fall63153.2024.10757955
M3 - Conference contribution
AN - SCOPUS:85213035082
T3 - IEEE Vehicular Technology Conference
BT - 2024 IEEE 100th Vehicular Technology Conference, VTC 2024-Fall - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 100th IEEE Vehicular Technology Conference, VTC 2024-Fall
Y2 - 7 October 2024 through 10 October 2024
ER -