Abstract
BACKGROUND: β-tricalcium phosphate (β-TCP) has been successfully utilized as a 3D printed ceramic scaffold in the repair of non-healing bone defects; however, it requires the addition of growth factors to augment its regenerative capacity. Synthetic bone mineral (SBM) is a novel and extrudable carbonate hydroxyapatite with ionic substitutions known to facilitate bone healing. However, its efficacy as a 3D printed scaffold for hard tissue defect repair has not been explored. OBJECTIVE: To evaluate the biocompatibility and cell viability of human osteoprecursor (hOP) cells seeded on 3D printed SBM scaffolds via in vitro analysis. METHODS: SBM and β-TCP scaffolds were fabricated via 3D printing and sintered at various temperatures. Scaffolds were then subject to qualitative cytotoxicity testing and cell proliferation experiments utilizing (hOP) cells. RESULTS: SBM scaffolds sintered at lower temperatures (600 °C and 700 °C) induced greater levels of acute cellular stress. At higher sintering temperatures (1100 °C), SBM scaffolds showed inferior cellular viability relative to β-TCP scaffolds sintered to the same temperature (1100 °C). However, qualitative analysis suggested that β-TCP presented no evidence of morphological change, while SBM 1100 °C showed few instances of acute cellular stress. CONCLUSION: Results demonstrate SBM may be a promising alternative to β-TCP for potential applications in bone tissue engineering.
Original language | English (US) |
---|---|
Pages (from-to) | 365-375 |
Number of pages | 11 |
Journal | Bio-Medical Materials and Engineering |
Volume | 35 |
Issue number | 4 |
DOIs | |
State | Published - Jul 12 2024 |
Keywords
- 3D printing
- bioceramics
- bone regeneration
- direct inkjet writing
- synthetic bone mineral
ASJC Scopus subject areas
- Biomaterials
- Biomedical Engineering