3D Unsupervised Region-Aware Registration Transformer

Yu Hao, Yi Fang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper concerns the research problem of point cloud registration to find the rigid transformation to optimally align the source point set with the target one. Learning robust point cloud registration models with deep neural networks has emerged as a powerful paradigm, offering promising performance in predicting the global geometric transformation for a pair of point sets. Existing methods first leverage an encoder to regress the global shape descriptor, which is then decoded into a shape-conditioned transformation via concatenation-based conditioning. However, different regions of a 3D shape vary in their geometric structures which makes it more sense that we have a region-conditioned transformation instead of the shape-conditioned one. In this paper, we define our 3D registration function through the introduction of a new design of 3D region partition module that is able to divide the input shape to different regions with a self-supervised 3D shape reconstruction loss without the need for ground truth labels. We further propose the 3D shape transformer module to efficiently and effectively capture short-and long-range geometric dependencies for regions on the 3D shape Consequently, the region-aware decoder module is proposed to predict the transformations for different regions respectively. The global geometric transformation from the source point set to the target one is then formed by the weighted fusion of region-aware transformation. Compared to the state-of-the-art approaches, our experiments show that our 3D-URRT achieves superior registration performance over various benchmark datasets (e.g. ModelNet40).

Original languageEnglish (US)
Title of host publication2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
PublisherIEEE Computer Society
Pages2780-2784
Number of pages5
ISBN (Electronic)9781728198354
DOIs
StatePublished - 2023
Event30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, Malaysia
Duration: Oct 8 2023Oct 11 2023

Publication series

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Conference

Conference30th IEEE International Conference on Image Processing, ICIP 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period10/8/2310/11/23

Keywords

  • 3D registration
  • unsupervised registration

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition
  • Signal Processing

Fingerprint

Dive into the research topics of '3D Unsupervised Region-Aware Registration Transformer'. Together they form a unique fingerprint.

Cite this