TY - JOUR
T1 - A 7.3 M Output Non-Zeros/J, 11.7 M Output Non-Zeros/GB Reconfigurable Sparse Matrix-Matrix Multiplication Accelerator
AU - Park, Dong Hyeon
AU - Pal, Subhankar
AU - Feng, Siying
AU - Gao, Paul
AU - Tan, Jielun
AU - Rovinski, Austin
AU - Xie, Shaolin
AU - Zhao, Chun
AU - Amarnath, Aporva
AU - Wesley, Timothy
AU - Beaumont, Jonathan
AU - Chen, Kuan Yu
AU - Chakrabarti, Chaitali
AU - Taylor, Michael Bedford
AU - Mudge, Trevor
AU - Blaauw, David
AU - Kim, Hun Seok
AU - Dreslinski, Ronald G.
N1 - Publisher Copyright:
© 1966-2012 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - A sparse matrix-matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40-nm CMOS. The compute fabric consists of dedicated floating-point multiplication units, and general-purpose Arm Cortex-M0 and Cortex-M4 cores. The on-chip memory reconfigures scratchpad or cache, depending on the phase of the algorithm. The memory and compute units are interconnected with synthesizable coalescing crossbars for efficient memory access. The 2.0-mm \times 2.6-mm chip exhibits 12.6 \times (8.4 \times ) energy efficiency gain, 11.7 \times (77.6 \times ) off-chip bandwidth efficiency gain, and 17.1 \times (36.9 \times ) compute density gain s against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph-based sparse matrices.
AB - A sparse matrix-matrix multiplication (SpMM) accelerator with 48 heterogeneous cores and a reconfigurable memory hierarchy is fabricated in 40-nm CMOS. The compute fabric consists of dedicated floating-point multiplication units, and general-purpose Arm Cortex-M0 and Cortex-M4 cores. The on-chip memory reconfigures scratchpad or cache, depending on the phase of the algorithm. The memory and compute units are interconnected with synthesizable coalescing crossbars for efficient memory access. The 2.0-mm \times 2.6-mm chip exhibits 12.6 \times (8.4 \times ) energy efficiency gain, 11.7 \times (77.6 \times ) off-chip bandwidth efficiency gain, and 17.1 \times (36.9 \times ) compute density gain s against a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law graph-based sparse matrices.
KW - Decoupled access execution
KW - reconfigurablility and accelerator
KW - sparse matrix multiplier
KW - synthesizable crossbar
UR - http://www.scopus.com/inward/record.url?scp=85082859300&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082859300&partnerID=8YFLogxK
U2 - 10.1109/JSSC.2019.2960480
DO - 10.1109/JSSC.2019.2960480
M3 - Article
AN - SCOPUS:85082859300
SN - 0018-9200
VL - 55
SP - 933
EP - 944
JO - IEEE Journal of Solid-State Circuits
JF - IEEE Journal of Solid-State Circuits
IS - 4
M1 - 8947989
ER -