A benchmark for systematic generalization in grounded language understanding

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, Brenden M. Lake

Research output: Contribution to journalConference articlepeer-review

Abstract

Humans easily interpret expressions that describe unfamiliar situations composed from familiar parts (“greet the pink brontosaurus by the ferris wheel”). Modern neural networks, by contrast, struggle to interpret novel compositions. In this paper, we introduce a new benchmark, gSCAN, for evaluating compositional generalization in situated language understanding. Going beyond a related benchmark that focused on syntactic aspects of generalization, gSCAN defines a language grounded in the states of a grid world, facilitating novel evaluations of acquiring linguistically motivated rules. For example, agents must understand how adjectives such as ‘small’ are interpreted relative to the current world state or how adverbs such as ‘cautiously’ combine with new verbs. We test a strong multi-modal baseline model and a state-of-the-art compositional method finding that, in most cases, they fail dramatically when generalization requires systematic compositional rules.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A benchmark for systematic generalization in grounded language understanding'. Together they form a unique fingerprint.

Cite this