A carbon nanotube transistor based RISC-V processor using pass transistor logic

Aporva Amarnath, Siying Feng, Subhankar Pal, Tutu Ajayi, Austin Rovinski, Ronald G. Dreslinski

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With silicon-based transistors approaching their scaling limits, multiple successor technologies are competing for silicon's place. Due to recent fabrication breakthroughs, one promising alternative is the carbon nanotube field-effect transistor (CNTFET), which uses carbon nanotubes as the channel medium instead of silicon. Although logic gates using CNTFETs have been demonstrated to provide up to an order of magnitude better energy-delay product (EDP) over silicon-based counterparts, system-level design using CNTFETs show significantly smaller EDP improvement because of the critical path of the design, output load capacitance and corresponding drive strengths of gates. In this paper, we address this challenge by exploring various architectural design choices using CNTFET-based pass transistor logic (PTL) and create an energy-efficient RISC-V processor. While silicon-based design traditionally prefers complementary logic over PTL, CNTFETs are ideal candidates for PTL due to their low threshold voltage, low power dissipation, and equal strength p-type and n-type transistors. By utilizing PTL to design modules that lie on the processor's critical path, systems can efficiently exploit CNTFET's potential benefits. Our results show that while a CNTFET RISC-V processor using complementary logic achieves a 2.9× EDP improvement over a silicon design, using PTL along the critical path components in the ALU can boost EDP improvement 5× as well as reduce area by 17% over 16 nm silicon CMOS.

Original languageEnglish (US)
Title of host publicationISLPED 2017 - IEEE/ACM International Symposium on Low Power Electronics and Design
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509060238
DOIs
StatePublished - Aug 11 2017
Event22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017 - Taipei, Taiwan, Province of China
Duration: Jul 24 2017Jul 26 2017

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Conference

Conference22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017
Country/TerritoryTaiwan, Province of China
CityTaipei
Period7/24/177/26/17

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'A carbon nanotube transistor based RISC-V processor using pass transistor logic'. Together they form a unique fingerprint.

Cite this