A complete statistical model for calibration of RNA-seq counts using external spike-ins and maximum likelihood theory

Rodoniki Athanasiadou, Benjamin Neymotin, Nathan Brandt, Wei Wang, Lionel Christiaen, David Gresham, Daniel Tranchina

Research output: Contribution to journalArticlepeer-review


A fundamental assumption, common to the vast majority of high-throughput transcriptome analyses, is that the expression of most genes is unchanged among samples and that total cellular RNA remains constant. As the number of analyzed experimental systems increases however, different independent studies demonstrate that this assumption is often violated. We present a calibration method using RNA spike-ins that allows for the measurement of absolute cellular abundance of RNA molecules. We apply the method to pooled RNA from cell populations of known sizes. For each transcript, we compute a nominal abundance that can be converted to absolute by dividing by a scale factor determined in separate experiments: the yield coefficient of the transcript relative to that of a reference spike-in measured with the same protocol. The method is derived by maximum likelihood theory in the context of a complete statistical model for sequencing counts contributed by cellular RNA and spikeins. The counts are based on a sample from a fixed number of cells to which a fixed population of spike-in molecules has been added. We illustrate and evaluate the method with applications to two global expression data sets, one from the model eukaryote Saccharomyces cerevisiae, proliferating at different growth rates, and differentiating cardiopharyngeal cell lineages in the chordate Ciona robusta. We tested the method in a technical replicate dilution study, and in a k-fold validation study.

Original languageEnglish (US)
Article numbere1006794
JournalPLoS computational biology
Issue number3
StatePublished - Mar 2019

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics


Dive into the research topics of 'A complete statistical model for calibration of RNA-seq counts using external spike-ins and maximum likelihood theory'. Together they form a unique fingerprint.

Cite this