A convex model of humanoid momentum dynamics for multi-contact motion generation

Brahayam Ponton, Alexander Herzog, Stefan Schaal, Ludovic Righetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Linear models for control and motion generation of humanoid robots have received significant attention in the past years, not only due to their well known theoretical guarantees, but also because of practical computational advantages. However, to tackle more challenging tasks and scenarios such as locomotion on uneven terrain, a more expressive model is required. In this paper, we are interested in contact interaction-centered motion optimization based on the momentum dynamics model. This model is non-linear and non-convex; however, we find a relaxation of the problem that allows us to formulate it as a single convex quadratically-constrained quadratic program (QCQP) that can be very efficiently optimized and is useful for multi-contact planning. This convex model is then coupled to the optimization of end-effector contact locations using a mixed integer program, which can also be efficiently solved. This becomes relevant e.g. to recover from external pushes, where a predefined stepping plan is likely to fail and an online adaptation of the contact location is needed. The performance of our algorithm is demonstrated in several multi-contact scenarios for a humanoid robot.

Original languageEnglish (US)
Title of host publicationHumanoids 2016 - IEEE-RAS International Conference on Humanoid Robots
PublisherIEEE Computer Society
Pages842-849
Number of pages8
ISBN (Electronic)9781509047185
DOIs
StatePublished - Dec 30 2016
Event16th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2016 - Cancun, Mexico
Duration: Nov 15 2016Nov 17 2016

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Other

Other16th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2016
CountryMexico
CityCancun
Period11/15/1611/17/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Human-Computer Interaction
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A convex model of humanoid momentum dynamics for multi-contact motion generation'. Together they form a unique fingerprint.

Cite this