A credit assignment compiler for joint prediction

Kai Wei Chang, He He, Hal Daumé, John Langford, Stephane Ross

Research output: Contribution to journalConference articlepeer-review

Abstract

Many machine learning applications involve jointly predicting multiple mutually dependent output variables. Learning to search is a family of methods where the complex decision problem is cast into a sequence of decisions via a search space. Although these methods have shown promise both in theory and in practice, implementing them has been burdensomely awkward. In this paper, we show the search space can be defined by an arbitrary imperative program, turning learning to search into a credit assignment compiler. Altogether with the algorithmic improvements for the compiler, we radically reduce the complexity of programming and the running time. We demonstrate the feasibility of our approach on multiple joint prediction tasks. In all cases, we obtain accuracies as high as alternative approaches, at drastically reduced execution and programming time.

Original languageEnglish (US)
Pages (from-to)1713-1721
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2016
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: Dec 5 2016Dec 10 2016

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'A credit assignment compiler for joint prediction'. Together they form a unique fingerprint.

Cite this