A Deep Reinforcement Learning Environment for Particle Robot Navigation and Object Manipulation

Jeremy Shen, Erdong Xiao, Yuchen Liu, Chen Feng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Particle robots are novel biologically-inspired robotic systems where locomotion can be achieved collectively and robustly, but not independently. While its control is currently limited to a hand-crafted policy for basic locomotion tasks, such a multi-robot system could be potentially controlled via Deep Reinforcement Learning (DRL) for different tasks more efficiently. However, the particle robot system presents a new set of challenges for DRL differing from existing swarm robotics systems: the low degrees of freedom of each robot and the increased necessity of coordination between robots. We present a 2D particle robot simulator using the OpenAI Gym interface and Pymunk as the physics engine, and introduce new tasks and challenges to research the underexplored applications of DRL in the particle robot system. Moreover, we use Stable-baselines3 to provide a set of benchmarks for the tasks. Current baseline DRL algorithms show signs of achieving the tasks but are yet unable to reach the performance of the hand-crafted policy. Further development of DRL algorithms is necessary in order to accomplish the proposed tasks.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6232-6239
Number of pages8
ISBN (Electronic)9781728196817
DOIs
StatePublished - 2022
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: May 23 2022May 27 2022

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period5/23/225/27/22

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Deep Reinforcement Learning Environment for Particle Robot Navigation and Object Manipulation'. Together they form a unique fingerprint.

Cite this