TY - GEN
T1 - A differential game approach to distributed demand side management in smart grid
AU - Zhu, Quanyan
AU - Han, Zhu
AU - Başar, T.
PY - 2012
Y1 - 2012
N2 - Smart grid is a visionary user-centric system that will elevate the conventional power grid system to one which functions more cooperatively, responsively, and economically. Dynamic demand side management is one of the key issues that enable the implementation of smart grid. In this paper, we use the framework of dynamic games to model the distribution demand side management. The market price is characterized as the dynamic state using a sticky price model. A two-layer optimization framework is established. At the lower level, for each player (such as one household), different appliances are scheduled for energy consumption. At the upper level, the dynamic game is used to capture the interaction among different players in their demand responses through the market price. We analyze the N-person nonzero-sum stochastic differential game and characterize its feedback Nash equilibrium. A special case of homogeneous users is investigated in detail and we provide a closed-form solution for the optimal demand response. From the simulation results, we demonstrate the use of demand response strategy from the game-theoretic framework and study the behavior of market price and demand responses to different parameters.
AB - Smart grid is a visionary user-centric system that will elevate the conventional power grid system to one which functions more cooperatively, responsively, and economically. Dynamic demand side management is one of the key issues that enable the implementation of smart grid. In this paper, we use the framework of dynamic games to model the distribution demand side management. The market price is characterized as the dynamic state using a sticky price model. A two-layer optimization framework is established. At the lower level, for each player (such as one household), different appliances are scheduled for energy consumption. At the upper level, the dynamic game is used to capture the interaction among different players in their demand responses through the market price. We analyze the N-person nonzero-sum stochastic differential game and characterize its feedback Nash equilibrium. A special case of homogeneous users is investigated in detail and we provide a closed-form solution for the optimal demand response. From the simulation results, we demonstrate the use of demand response strategy from the game-theoretic framework and study the behavior of market price and demand responses to different parameters.
UR - http://www.scopus.com/inward/record.url?scp=84871969998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871969998&partnerID=8YFLogxK
U2 - 10.1109/ICC.2012.6364562
DO - 10.1109/ICC.2012.6364562
M3 - Conference contribution
AN - SCOPUS:84871969998
SN - 9781457720529
T3 - IEEE International Conference on Communications
SP - 3345
EP - 3350
BT - 2012 IEEE International Conference on Communications, ICC 2012
T2 - 2012 IEEE International Conference on Communications, ICC 2012
Y2 - 10 June 2012 through 15 June 2012
ER -