Abstract
A new methodology for density estimation is proposed. The methodology, which builds on the one developed by Tabak and Vanden-Eijnden, normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the elementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity, and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complexity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps.
Original language | English (US) |
---|---|
Pages (from-to) | 145-164 |
Number of pages | 20 |
Journal | Communications on Pure and Applied Mathematics |
Volume | 66 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2013 |
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics