TY - GEN
T1 - A fast multi-resolution method for detection of significant spatial disease clusters
AU - Neill, Daniel B.
AU - Moore, Andrew W.
PY - 2004
Y1 - 2004
N2 - Given an N×N grid of squares, where each square has a count and an underlying population, our goal is to find the square region with the highest density, and to calculate its significance by randomization. Any density measure D, dependent on the total count and total population of a region, can be used. For example, if each count represents the number of disease cases occurring in that square, we can use Kulldorff's spatial scan statistic DK to find the most significant spatial disease cluster. A naive approach to finding the maximum density region requires O(N3) time, and is generally computationally infeasible. We present a novel algorithm which partitions the grid into overlapping regions, bounds the maximum score of subregions contained in each region, and prunes regions which cannot contain the maximum density region. For sufficiently dense regions, this method finds the maximum density region in optimal O(N2) time, in practice resulting in significant (10-200x) speedups.
AB - Given an N×N grid of squares, where each square has a count and an underlying population, our goal is to find the square region with the highest density, and to calculate its significance by randomization. Any density measure D, dependent on the total count and total population of a region, can be used. For example, if each count represents the number of disease cases occurring in that square, we can use Kulldorff's spatial scan statistic DK to find the most significant spatial disease cluster. A naive approach to finding the maximum density region requires O(N3) time, and is generally computationally infeasible. We present a novel algorithm which partitions the grid into overlapping regions, bounds the maximum score of subregions contained in each region, and prunes regions which cannot contain the maximum density region. For sufficiently dense regions, this method finds the maximum density region in optimal O(N2) time, in practice resulting in significant (10-200x) speedups.
UR - http://www.scopus.com/inward/record.url?scp=84898947558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898947558&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84898947558
SN - 0262201526
SN - 9780262201520
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PB - Neural information processing systems foundation
T2 - 17th Annual Conference on Neural Information Processing Systems, NIPS 2003
Y2 - 8 December 2003 through 13 December 2003
ER -