A framework for evacuation hotspot detection after large scale disasters using location data from smartphones: Case study of Kumamoto Earthquake

Takahiro Yabe, Kota Tsubouchi, Akihito Sudo, Yoshihide Sekimoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large scale disasters cause severe social disorder and trigger mass evacuation activities. Managing the evacuation shelters efficiently is crucial for disaster management. Kumamoto prefecture, Japan, was hit by an enormous (Magnitude 7.3) earthquake on 16th of April, 2016. As a result, more than 10,000 buildings were severely damaged and over 100,000 people had to evacuate from their homes. After the earthquake, it took the decision makers several days to grasp the locations where people were evacuating, which delayed of distribution of supply and rescue. This situation was made even more complex since some people evacuated to places that were not designated as evacuation shelters. Conventional methods for grasping evacuation hotspots require on-foot field surveys that take time and are difficult to execute right after the hazard in the confusion. We propose a novel framework to efficiently estimate the evacuation hotspots after large disasters using location data collected from smartphones. To validate our framework and show the useful analysis using our output, we demonstrated the framework on the Kumamoto earthquake using GPS data of smartphones collected by Yahoo Japan. We verified that our estimation accuracy of evacuation hotspots were very high by checking the located facilities and also by comparing the population transition results with newspaper reports. Additionally, we demonstrated analysis using our framework outputs that would help decision makers, such as the population transition and function period of each hotspot. The efficiency of our framework is also validated by checking the processing time, showing that it could be utilized efficiently in disasters of any scale. Our framework provides useful output for decision makers that manage evacuation shelters after various kinds of large scale disasters.

Original languageEnglish (US)
Title of host publication24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
EditorsMatthias Renz, Mohamed Ali, Shawn Newsam, Matthias Renz, Siva Ravada, Goce Trajcevski
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450345897
DOIs
StatePublished - Oct 31 2016
Event24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016 - Burlingame, United States
Duration: Oct 31 2016Nov 3 2016

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Conference

Conference24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
Country/TerritoryUnited States
CityBurlingame
Period10/31/1611/3/16

Keywords

  • Disaster Management
  • Evacuation Hotspot Detection
  • Human Mobility
  • Location Data
  • Urban Computing

ASJC Scopus subject areas

  • Earth-Surface Processes
  • Computer Science Applications
  • Modeling and Simulation
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint

Dive into the research topics of 'A framework for evacuation hotspot detection after large scale disasters using location data from smartphones: Case study of Kumamoto Earthquake'. Together they form a unique fingerprint.

Cite this