TY - JOUR
T1 - A geometrical approach to computing free-energy landscapes from short-ranged potentials
AU - Holmes-Cerfon, Miranda
AU - Gortler, Steven J.
AU - Brenner, Michael P.
PY - 2013/1/2
Y1 - 2013/1/2
N2 - Particles interacting with short-ranged potentials have attracted increasing interest, partly for their ability to model mesoscale systems such as colloids interacting via DNA or depletion. We consider the free-energy landscape of such systems as the range of the potential goes to zero. In this limit, the landscape is entirely defined by geometrical manifolds, plus a single control parameter. These manifolds are fundamental objects that do not depend on the details of the interaction potential and provide the starting point from which any quantity characterizing the system - equilibrium or nonequilibrium - can be computed for arbitrary potentials. To consider dynamical quantities we compute the asymptotic limit of the Fokker-Planck equation and show that it becomes restricted to the low-dimensional manifolds connected by "sticky" boundary conditions. To illustrate our theory, we compute the low-dimensional manifolds for n ≤ 8 identical particles, providing a complete description of the lowest-energy parts of the landscape including floppy modes with up to 2 internal degrees of freedom. The results can be directly tested on colloidal clusters. This limit is a unique approach for understanding energy landscapes, and our hope is that it can also provide insight into finite-range potentials.
AB - Particles interacting with short-ranged potentials have attracted increasing interest, partly for their ability to model mesoscale systems such as colloids interacting via DNA or depletion. We consider the free-energy landscape of such systems as the range of the potential goes to zero. In this limit, the landscape is entirely defined by geometrical manifolds, plus a single control parameter. These manifolds are fundamental objects that do not depend on the details of the interaction potential and provide the starting point from which any quantity characterizing the system - equilibrium or nonequilibrium - can be computed for arbitrary potentials. To consider dynamical quantities we compute the asymptotic limit of the Fokker-Planck equation and show that it becomes restricted to the low-dimensional manifolds connected by "sticky" boundary conditions. To illustrate our theory, we compute the low-dimensional manifolds for n ≤ 8 identical particles, providing a complete description of the lowest-energy parts of the landscape including floppy modes with up to 2 internal degrees of freedom. The results can be directly tested on colloidal clusters. This limit is a unique approach for understanding energy landscapes, and our hope is that it can also provide insight into finite-range potentials.
KW - Self-assembly
KW - Sticky Brownian motion
KW - Sticky spheres
KW - Transition rates
UR - http://www.scopus.com/inward/record.url?scp=84871943759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871943759&partnerID=8YFLogxK
U2 - 10.1073/pnas.1211720110
DO - 10.1073/pnas.1211720110
M3 - Review article
C2 - 23248296
AN - SCOPUS:84871943759
SN - 0027-8424
VL - 110
SP - E5-E14
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 1
ER -