A gravity-based three-dimensional compass in the mouse brain

Dora E. Angelaki, Julia Ng, Amada M. Abrego, Henry X. Cham, Eftihia K. Asprodini, J. David Dickman, Jean Laurens

Research output: Contribution to journalArticle

Abstract

Gravity sensing provides a robust verticality signal for three-dimensional navigation. Head direction cells in the mammalian limbic system implement an allocentric neuronal compass. Here we show that head-direction cells in the rodent thalamus, retrosplenial cortex and cingulum fiber bundle are tuned to conjunctive combinations of azimuth and tilt, i.e. pitch or roll. Pitch and roll orientation tuning is anchored to gravity and independent of visual landmarks. When the head tilts, azimuth tuning is affixed to the head-horizontal plane, but also uses gravity to remain anchored to the allocentric bearings in the earth-horizontal plane. Collectively, these results demonstrate that a three-dimensional, gravity-based, neural compass is likely a ubiquitous property of mammalian species, including ground-dwelling animals.

Original languageEnglish (US)
Article number1855
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'A gravity-based three-dimensional compass in the mouse brain'. Together they form a unique fingerprint.

  • Cite this

    Angelaki, D. E., Ng, J., Abrego, A. M., Cham, H. X., Asprodini, E. K., Dickman, J. D., & Laurens, J. (2020). A gravity-based three-dimensional compass in the mouse brain. Nature communications, 11(1), [1855]. https://doi.org/10.1038/s41467-020-15566-5