A hierarchy of temporal receptive windows in human cortex

Uri Hasson, Eunice Yang, Ignacio Vallines, David J. Heeger, Nava Rubin

Research output: Contribution to journalArticlepeer-review

Abstract

Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (∼36 s) than STS and precuneus (∼12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain.

Original languageEnglish (US)
Pages (from-to)2539-2550
Number of pages12
JournalJournal of Neuroscience
Volume28
Issue number10
DOIs
StatePublished - Mar 5 2008

Keywords

  • Cortex
  • Functional organization
  • Receptive fields
  • Temporal coding
  • Time
  • fMRI

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'A hierarchy of temporal receptive windows in human cortex'. Together they form a unique fingerprint.

Cite this