A joint analysis of dropout and learning functions in human decision-making with massive online data

Ionatan Kuperwajs, Wei Ji Ma

Research output: Contribution to conferencePaperpeer-review

Abstract

The introduction of large-scale data sets in psychology allows for more robust accounts of various cognitive mechanisms, one of which is human learning. However, these data sets provide participants with complete autonomy over their own participation in the task, and therefore require precisely studying the factors influencing dropout alongside learning. In this work, we present such a data set where 1, 234, 844 participants play 10, 874, 547 games of a challenging variant of tic-tac-toe. We establish that there is a correlation between task performance and total experience, and independently analyze participants' dropout behavior and learning trajectories. We find evidence for stopping patterns as a function of playing strength and investigate the processes underlying playing strength increases with experience using a set of metrics derived from a planning model. Finally, we develop a joint model to account for both dropout and learning functions which replicates our empirical findings.

Original languageEnglish (US)
Pages1197-1203
Number of pages7
StatePublished - 2022
Event44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 - Toronto, Canada
Duration: Jul 27 2022Jul 30 2022

Conference

Conference44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022
Country/TerritoryCanada
CityToronto
Period7/27/227/30/22

Keywords

  • behavioral modeling
  • decision-making
  • dropout
  • learning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'A joint analysis of dropout and learning functions in human decision-making with massive online data'. Together they form a unique fingerprint.

Cite this