TY - JOUR
T1 - A machine learning framework for enhancing digital experiences in cultural heritage
AU - Belhi, Abdelhak
AU - Bouras, Abdelaziz
AU - Al-Ali, Abdulaziz Khalid
AU - Foufou, Sebti
N1 - Publisher Copyright:
© 2020, Emerald Publishing Limited.
PY - 2023/4/24
Y1 - 2023/4/24
N2 - Purpose: Digital tools have been used to document cultural heritage with high-quality imaging and metadata. However, some of the historical assets are totally or partially unlabeled and some are physically damaged, which decreases their attractiveness and induces loss of value. This paper introduces a new framework that aims at tackling the cultural data enrichment challenge using machine learning. Design/methodology/approach: This framework focuses on the automatic annotation and metadata completion through new deep learning classification and annotation methods. It also addresses issues related to physically damaged heritage objects through a new image reconstruction approach based on supervised and unsupervised learning. Findings: The authors evaluate approaches on a data set of cultural objects collected from various cultural institutions around the world. For annotation and classification part of this study, the authors proposed and implemented a hierarchical multimodal classifier that improves the quality of annotation and increases the accuracy of the model, thanks to the introduction of multitask multimodal learning. Regarding cultural data visual reconstruction, the proposed clustering-based method, which combines supervised and unsupervised learning is found to yield better quality completion than existing inpainting frameworks. Originality/value: This research work is original in sense that it proposes new approaches for the cultural data enrichment, and to the authors’ knowledge, none of the existing enrichment approaches focus on providing an integrated framework based on machine learning to solve current challenges in cultural heritage. These challenges, which are identified by the authors are related to metadata annotation and visual reconstruction.
AB - Purpose: Digital tools have been used to document cultural heritage with high-quality imaging and metadata. However, some of the historical assets are totally or partially unlabeled and some are physically damaged, which decreases their attractiveness and induces loss of value. This paper introduces a new framework that aims at tackling the cultural data enrichment challenge using machine learning. Design/methodology/approach: This framework focuses on the automatic annotation and metadata completion through new deep learning classification and annotation methods. It also addresses issues related to physically damaged heritage objects through a new image reconstruction approach based on supervised and unsupervised learning. Findings: The authors evaluate approaches on a data set of cultural objects collected from various cultural institutions around the world. For annotation and classification part of this study, the authors proposed and implemented a hierarchical multimodal classifier that improves the quality of annotation and increases the accuracy of the model, thanks to the introduction of multitask multimodal learning. Regarding cultural data visual reconstruction, the proposed clustering-based method, which combines supervised and unsupervised learning is found to yield better quality completion than existing inpainting frameworks. Originality/value: This research work is original in sense that it proposes new approaches for the cultural data enrichment, and to the authors’ knowledge, none of the existing enrichment approaches focus on providing an integrated framework based on machine learning to solve current challenges in cultural heritage. These challenges, which are identified by the authors are related to metadata annotation and visual reconstruction.
KW - Cultural heritage
KW - Deep learning
KW - Digital heritage
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85085915646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085915646&partnerID=8YFLogxK
U2 - 10.1108/JEIM-02-2020-0059
DO - 10.1108/JEIM-02-2020-0059
M3 - Article
AN - SCOPUS:85085915646
SN - 1741-0398
VL - 36
SP - 734
EP - 746
JO - Journal of Enterprise Information Management
JF - Journal of Enterprise Information Management
IS - 3
ER -