TY - JOUR
T1 - A mathematical motivation for complex-valued convolutional networks
AU - Tygert, Mark
AU - Bruna, Joan
AU - Chintala, Soumith
AU - LeCun, Yann
AU - Piantino, Serkan
AU - Szlam, Arthur
PY - 2016/5/1
Y1 - 2016/5/1
N2 - A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence ismuchmore than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.
AB - A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence ismuchmore than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.
UR - http://www.scopus.com/inward/record.url?scp=84964049763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964049763&partnerID=8YFLogxK
U2 - 10.1162/NECO_a_00824
DO - 10.1162/NECO_a_00824
M3 - Article
AN - SCOPUS:84964049763
SN - 0899-7667
VL - 28
SP - 815
EP - 825
JO - Neural computation
JF - Neural computation
IS - 5
ER -