## Abstract

We introduce a general technique for proving estimates for certain random planar maps which belong to the γ-Liouville quantum gravity (LQG) universality class for γ∈ (0 , 2). The family of random planar maps we consider are those which can be encoded by a two-dimensional random walk with i.i.d. increments via a mating-of-trees bijection, and includes the uniform infinite planar triangulation (UIPT; γ=8/3); and planar maps weighted by the number of different spanning trees (γ=2), bipolar orientations (γ=4/3), or Schnyder woods (γ= 1) that can be put on the map. Using our technique, we prove estimates for graph distances in the above family of random planar maps. In particular, we obtain non-trivial upper and lower bounds for the cardinality of a graph distance ball consistent with the Watabiki (Prog Theor Phys Suppl 114:1–17, 1993) prediction for the Hausdorff dimension of γ-LQG and we establish the existence of an exponent for certain distances in the map. The basic idea of our approach is to compare a given random planar map M to a mated-CRT map—a random planar map constructed from a correlated two-dimensional Brownian motion—using a strong coupling (Zaitsev in ESAIM Probab Stat 2:41–108, 1998) of the encoding walk for M and the Brownian motion used to construct the mated-CRT map. This allows us to deduce estimates for graph distances in M from the estimates for graph distances in the mated-CRT map which we proved (using continuum theory) in a previous work. In the special case when γ=8/3, we instead deduce estimates for the 8/3-mated-CRT map from known results for the UIPT. The arguments of this paper do not directly use SLE/LQG, and can be read without any knowledge of these objects.

Original language | English (US) |
---|---|

Pages (from-to) | 1043-1102 |

Number of pages | 60 |

Journal | Probability Theory and Related Fields |

Volume | 177 |

Issue number | 3-4 |

DOIs | |

State | Published - Aug 1 2020 |

## ASJC Scopus subject areas

- Analysis
- Statistics and Probability
- Statistics, Probability and Uncertainty