Abstract
We study relaxed stochastic control problems where the state equation is a one dimensional linear stochastic differential equation with random and unbounded coefficients. The two main results are existence of an optimal relaxed control and necessary conditions for optimality in the form of a relaxed maximum principle. The main motivation is an optimal bond portfolio problem in a market where there exists a continuum of bonds and the portfolio weights are modeled as measure-valued processes on the set of times to maturity.
Original language | English (US) |
---|---|
Pages (from-to) | 273-310 |
Number of pages | 38 |
Journal | Mathematical Methods of Operations Research |
Volume | 72 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2010 |
Keywords
- Bond portfolio
- H -function
- Maximum principle
- Relaxed control
- Stochastic control
ASJC Scopus subject areas
- Software
- General Mathematics
- Management Science and Operations Research