TY - JOUR
T1 - A Multiwavelength Study of GRS 1716-249 in Outburst
T2 - Constraints on Its System Parameters
AU - Saikia, Payaswini
AU - Russell, David M.
AU - Baglio, M. C.
AU - Bramich, D. M.
AU - Casella, Piergiorgio
AU - Trigo, Maria Diaz
AU - Gandhi, Poshak
AU - Jiang, Jiachen
AU - Maccarone, Thomas
AU - Soria, Roberto
AU - Al Noori, Hind
AU - Al Yazeedi, Aisha
AU - Alabarta, Kevin
AU - Belloni, Tomaso
AU - Bel, Marion Cadolle
AU - Ceccobello, Chiara
AU - Corbel, Stéphane
AU - Fender, Rob
AU - Gallo, Elena
AU - Homan, Jeroen
AU - Koljonen, Karri
AU - Lewis, Fraser
AU - Markoff, Sera B.
AU - Miller-Jones, James C.A.
AU - Rodriguez, Jerome
AU - Russell, Thomas D.
AU - Shahbaz, Tariq
AU - Sivakoff, Gregory R.
AU - Testa, Vincenzo
AU - Tetarenko, Alexandra J.
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We find evidence for a weak, but highly variable jet component at mid-infrared wavelengths. We also report the long-term optical light curve of the source and find that the quiescent i′ -band magnitude is 21.39 ± 0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 data set to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behavior, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of ∼4-8 kpc.
AB - We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We find evidence for a weak, but highly variable jet component at mid-infrared wavelengths. We also report the long-term optical light curve of the source and find that the quiescent i′ -band magnitude is 21.39 ± 0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 data set to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behavior, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of ∼4-8 kpc.
UR - http://www.scopus.com/inward/record.url?scp=85133010351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133010351&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac6ce1
DO - 10.3847/1538-4357/ac6ce1
M3 - Article
AN - SCOPUS:85133010351
SN - 0004-637X
VL - 932
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 38
ER -