A network model for Ebola spreading

Alessandro Rizzo, Biagio Pedalino, Maurizio Porfiri

Research output: Contribution to journalArticlepeer-review

Abstract

The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention.

Original languageEnglish (US)
Pages (from-to)212-222
Number of pages11
JournalJournal of Theoretical Biology
Volume394
DOIs
StatePublished - Apr 7 2016

Keywords

  • Activity driven networks
  • Ebola virus disease
  • Epidemic model
  • Interventions
  • Liberia

ASJC Scopus subject areas

  • Statistics and Probability
  • Modeling and Simulation
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A network model for Ebola spreading'. Together they form a unique fingerprint.

Cite this