TY - JOUR
T1 - A Network Neuroscience of Human Learning
T2 - Potential to Inform Quantitative Theories of Brain and Behavior
AU - Bassett, Danielle S.
AU - Mattar, Marcelo G.
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior.
AB - Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior.
UR - http://www.scopus.com/inward/record.url?scp=85014098195&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014098195&partnerID=8YFLogxK
U2 - 10.1016/j.tics.2017.01.010
DO - 10.1016/j.tics.2017.01.010
M3 - Review article
C2 - 28259554
AN - SCOPUS:85014098195
SN - 1364-6613
VL - 21
SP - 250
EP - 264
JO - Trends in Cognitive Sciences
JF - Trends in Cognitive Sciences
IS - 4
ER -