A neural network meta-model and its application for manufacturing

David Lechevalier, Steven Hudak, A. K. Ronay, Y. Tina Lee, Sebti Foufou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Manufacturing generates a vast amount of data both from operations and simulation. Extracting appropriate information from this data can provide insights to increase a manufacturer's competitive advantage through improved sustainability, productivity, and flexibility of their operations. Manufacturers, as well as other industries, have successfully applied a promising statistical learning technique, called neural networks (NNs), to extract meaningful information from large data sets, so called big data. However, the application of NN to manufacturing problems remains limited because it involves the specialized skills of a data scientist. This paper introduces an approach to automate the application of analytical models to manufacturing problems. We present an NN meta-model (MM), which defines a set of concepts, rules, and constraints to represent NNs. An NN model can be automatically generated and manipulated based on the specifications of the NN MM. In addition, we present an algorithm to generate a predictive model from an NN and available data. The predictive model is represented in either Predictive Model Markup Language (PMML) or Portable Format for Analytics (PFA). Then we illustrate the approach in the context of a specific manufacturing system. Finally, we identify future steps planned towards later implementation of the proposed approach.

Original languageEnglish (US)
Title of host publicationProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015
EditorsFeng Luo, Kemafor Ogan, Mohammed J. Zaki, Laura Haas, Beng Chin Ooi, Vipin Kumar, Sudarsan Rachuri, Saumyadipta Pyne, Howard Ho, Xiaohua Hu, Shipeng Yu, Morris Hui-I Hsiao, Jian Li
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1428-1435
Number of pages8
ISBN (Electronic)9781479999255
DOIs
StatePublished - Dec 22 2015
Event3rd IEEE International Conference on Big Data, IEEE Big Data 2015 - Santa Clara, United States
Duration: Oct 29 2015Nov 1 2015

Publication series

NameProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015

Other

Other3rd IEEE International Conference on Big Data, IEEE Big Data 2015
CountryUnited States
CitySanta Clara
Period10/29/1511/1/15

Keywords

  • PMML
  • data analytics
  • manufacturing
  • meta-model
  • neural network

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Information Systems
  • Software

Fingerprint Dive into the research topics of 'A neural network meta-model and its application for manufacturing'. Together they form a unique fingerprint.

  • Cite this

    Lechevalier, D., Hudak, S., Ronay, A. K., Lee, Y. T., & Foufou, S. (2015). A neural network meta-model and its application for manufacturing. In F. Luo, K. Ogan, M. J. Zaki, L. Haas, B. C. Ooi, V. Kumar, S. Rachuri, S. Pyne, H. Ho, X. Hu, S. Yu, M. H-I. Hsiao, & J. Li (Eds.), Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015 (pp. 1428-1435). [7363903] (Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BigData.2015.7363903