@inproceedings{a5014f725cb245008058035faa6ccc40,
title = "A neural network meta-model and its application for manufacturing",
abstract = "Manufacturing generates a vast amount of data both from operations and simulation. Extracting appropriate information from this data can provide insights to increase a manufacturer's competitive advantage through improved sustainability, productivity, and flexibility of their operations. Manufacturers, as well as other industries, have successfully applied a promising statistical learning technique, called neural networks (NNs), to extract meaningful information from large data sets, so called big data. However, the application of NN to manufacturing problems remains limited because it involves the specialized skills of a data scientist. This paper introduces an approach to automate the application of analytical models to manufacturing problems. We present an NN meta-model (MM), which defines a set of concepts, rules, and constraints to represent NNs. An NN model can be automatically generated and manipulated based on the specifications of the NN MM. In addition, we present an algorithm to generate a predictive model from an NN and available data. The predictive model is represented in either Predictive Model Markup Language (PMML) or Portable Format for Analytics (PFA). Then we illustrate the approach in the context of a specific manufacturing system. Finally, we identify future steps planned towards later implementation of the proposed approach.",
keywords = "PMML, data analytics, manufacturing, meta-model, neural network",
author = "David Lechevalier and Steven Hudak and Ronay, {A. K.} and Lee, {Y. Tina} and Sebti Foufou",
note = "Publisher Copyright: {\textcopyright} 2015 IEEE.; 3rd IEEE International Conference on Big Data, IEEE Big Data 2015 ; Conference date: 29-10-2015 Through 01-11-2015",
year = "2015",
month = dec,
day = "22",
doi = "10.1109/BigData.2015.7363903",
language = "English (US)",
series = "Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1428--1435",
editor = "Feng Luo and Kemafor Ogan and Zaki, {Mohammed J.} and Laura Haas and Ooi, {Beng Chin} and Vipin Kumar and Sudarsan Rachuri and Saumyadipta Pyne and Howard Ho and Xiaohua Hu and Shipeng Yu and Hsiao, {Morris Hui-I} and Jian Li",
booktitle = "Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015",
}