TY - JOUR
T1 - A new monocyte epigenetic clock reveals nonlinear effects of alcohol consumption on biological aging in three independent cohorts (N = 2242)
AU - Liang, Xiaoyu
AU - Sinha, Rajita
AU - Justice, Amy C.
AU - Cohen, Mardge H.
AU - Aouizerat, Bradley E.
AU - Xu, Ke
N1 - Publisher Copyright:
© 2022 by the Research Society on Alcoholism.
PY - 2022/5
Y1 - 2022/5
N2 - Background: Assessing the effect of alcohol consumption on biological age is essential for understanding alcohol use-related comorbidities and mortality. Previously developed epigenetic clocks are mainly based on DNA methylation in heterogeneous cell types, which provide limited knowledge on the impacts of alcohol consumption at the individual cellular level. Evidence shows that monocytes play an important role in both alcohol-induced pathophysiology and the aging process. In this study, we developed a novel monocyte-based DNA methylation clock (MonoDNAmAge) to assess the impact of alcohol consumption on monocyte age. Methods: A machine learning method was applied to select a set of chronological age-associated DNA methylation CpG sites from 1202 monocyte methylomes. Pearson correlation was tested between MonoDNAmAge and chronological age in three independent cohorts (Ntotal = 2242). Using the MonoDNAmAge clock and four established clocks (i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge), we then evaluated the effect of alcohol consumption on epigenetic aging in the three cohorts [i.e., Yale Stress Center Community Study (YSCCS), Veteran Aging Cohort Study (VACS), Women's Interagency HIV Study (WIHS)] using linear and quadratic models. Results: The MonoDNAmAge, comprised of 186 CpG sites, was moderately to strongly correlated with chronological age in the three cohorts (r = 0.90, p = 3.12E−181 in YSCCS; r = 0.54, p = 1.75E−96 in VACS; r = 0.66, p = 1.50E−60 in WIHS). More importantly, we found a nonlinear association between MonoDNAmAge and alcohol consumption (pmodel = 4.55E−08, (Formula presented.) = 7.80E−08 in YSCCS; pmodel = 1.85E−02, (Formula presented.) = 3.46E−02 in VACS). Heavy alcohol consumption increased EAAMonoDNAmAge up to 1.60 years while light alcohol consumption decreased EAAMonoDNAmAge up to 2.66 years. These results were corroborated by the four established epigenetic clocks (i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge). Conclusions: The results suggest a nonlinear relationship between alcohol consumption and its effects on epigenetic age. Considering adverse effects of alcohol consumption on health, nonlinear effects of alcohol use should be interpreted with caution. The findings, for the first time, highlight the complex effects of alcohol consumption on biological aging.
AB - Background: Assessing the effect of alcohol consumption on biological age is essential for understanding alcohol use-related comorbidities and mortality. Previously developed epigenetic clocks are mainly based on DNA methylation in heterogeneous cell types, which provide limited knowledge on the impacts of alcohol consumption at the individual cellular level. Evidence shows that monocytes play an important role in both alcohol-induced pathophysiology and the aging process. In this study, we developed a novel monocyte-based DNA methylation clock (MonoDNAmAge) to assess the impact of alcohol consumption on monocyte age. Methods: A machine learning method was applied to select a set of chronological age-associated DNA methylation CpG sites from 1202 monocyte methylomes. Pearson correlation was tested between MonoDNAmAge and chronological age in three independent cohorts (Ntotal = 2242). Using the MonoDNAmAge clock and four established clocks (i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge), we then evaluated the effect of alcohol consumption on epigenetic aging in the three cohorts [i.e., Yale Stress Center Community Study (YSCCS), Veteran Aging Cohort Study (VACS), Women's Interagency HIV Study (WIHS)] using linear and quadratic models. Results: The MonoDNAmAge, comprised of 186 CpG sites, was moderately to strongly correlated with chronological age in the three cohorts (r = 0.90, p = 3.12E−181 in YSCCS; r = 0.54, p = 1.75E−96 in VACS; r = 0.66, p = 1.50E−60 in WIHS). More importantly, we found a nonlinear association between MonoDNAmAge and alcohol consumption (pmodel = 4.55E−08, (Formula presented.) = 7.80E−08 in YSCCS; pmodel = 1.85E−02, (Formula presented.) = 3.46E−02 in VACS). Heavy alcohol consumption increased EAAMonoDNAmAge up to 1.60 years while light alcohol consumption decreased EAAMonoDNAmAge up to 2.66 years. These results were corroborated by the four established epigenetic clocks (i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge). Conclusions: The results suggest a nonlinear relationship between alcohol consumption and its effects on epigenetic age. Considering adverse effects of alcohol consumption on health, nonlinear effects of alcohol use should be interpreted with caution. The findings, for the first time, highlight the complex effects of alcohol consumption on biological aging.
KW - alcohol consumption
KW - epigenetic age acceleration
KW - monocyte epigenetic clock
KW - Alcohol Drinking/genetics
KW - Aging/genetics
KW - DNA Methylation
KW - Monocytes
KW - Epigenesis, Genetic
KW - Humans
KW - Female
KW - Cohort Studies
UR - http://www.scopus.com/inward/record.url?scp=85126339847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126339847&partnerID=8YFLogxK
U2 - 10.1111/acer.14803
DO - 10.1111/acer.14803
M3 - Article
C2 - 35257385
AN - SCOPUS:85126339847
SN - 0145-6008
VL - 46
SP - 736
EP - 748
JO - Alcoholism: Clinical and Experimental Research
JF - Alcoholism: Clinical and Experimental Research
IS - 5
ER -