TY - JOUR
T1 - A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades
AU - Dai, Weiwei
AU - Selesnick, Ivan
AU - Rizzo, John Ross
AU - Rucker, Janet
AU - Hudson, Todd
N1 - Publisher Copyright:
© 2017 The Authors
PY - 2017
Y1 - 2017
N2 - The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.
AB - The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.
KW - Differentiation
KW - Quantitative saccade analysis
KW - Saccade peak velocity
KW - Savitzky-Golay filter
KW - Smoothing
KW - Sparsity
UR - http://www.scopus.com/inward/record.url?scp=85027691619&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027691619&partnerID=8YFLogxK
U2 - 10.1167/17.9.10
DO - 10.1167/17.9.10
M3 - Article
C2 - 28813566
AN - SCOPUS:85027691619
SN - 1534-7362
VL - 17
JO - Journal of vision
JF - Journal of vision
IS - 9
M1 - 10
ER -