A nonsmooth model for discontinuous shear thickening fluids: Analysis and numerical solution

Juan Carlos De Los Reyes, Georg Stadler

Research output: Contribution to journalArticle

Abstract

We propose a nonsmooth continuum mechanical model for discontinuous shear thickening flow. The model obeys a formulation as energy minimization problem and its solution satisfies a Stokes type system with a nonsmooth constitute relation. Solutions have a free boundary at which the behavior of the fluid changes. We present Sobolev as well as Hölder regularity results and study the limit of the model as the viscosity in the shear thickened volume tends to infinity. A mixed problem formulation is discretized using finite elements and a semismooth Newton method is proposed for the solution of the resulting discrete system. Numerical problems for steady and unsteady shear thickening flows are presented and used to study the solution algorithm, properties of the flow and the free boundary. These numerical problems are motivated by recently reported experimental studies of dispersions with high particle-to-fluid volume fractions, which often show a sudden increase of viscosity at certain strain rates.

Original languageEnglish (US)
Pages (from-to)575-602
Number of pages28
JournalInterfaces and Free Boundaries
Volume16
Issue number4
DOIs
StatePublished - 2014

Keywords

  • Additional regularity
  • Fictitious domain method
  • Mixed discretization
  • Non-Newtonian fluid mechanics
  • Semismooth Newton method
  • Shear thickening
  • Variational inequality

ASJC Scopus subject areas

  • Surfaces and Interfaces

Fingerprint Dive into the research topics of 'A nonsmooth model for discontinuous shear thickening fluids: Analysis and numerical solution'. Together they form a unique fingerprint.

  • Cite this