Abstract
Given a matrix U, using a deterministic method, we extract a "large" submatrix of (whose columns are obtained by normalizing those of U) and control its smallest and largest singular value. We apply this result to the study of contact points of the unit ball of a finite normed space with its maximal volume ellipsoid. We consider also the paving problem and give a deterministic algorithm to partition a matrix into almost isometric blocks, recovering previous results of Bourgain-Tzafriri and Tropp. Finally, we partially answer a question raised by Naor about finding an algorithm in the spirit of Batson-Spielman-Srivastava's work to extract a "large" square submatrix of "small" norm.
Original language | English (US) |
---|---|
Pages (from-to) | 6431-6447 |
Number of pages | 17 |
Journal | International Mathematics Research Notices |
Volume | 2014 |
Issue number | 23 |
DOIs | |
State | Published - Jan 1 2014 |
ASJC Scopus subject areas
- General Mathematics