A novel graph-based k-partitioning approach improves the detection of gene-gene correlations by single-cell RNA sequencing

Heng Xu, Ying Hu, Xinyu Zhang, Bradley E. Aouizerat, Chunhua Yan, Ke Xu

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Gene expression is regulated by transcription factors, cofactors, and epigenetic mechanisms. Coexpressed genes indicate similar functional categories and gene networks. Detecting gene-gene coexpression is important for understanding the underlying mechanisms of cellular function and human diseases. A common practice of identifying coexpressed genes is to test the correlation of expression in a set of genes. In single-cell RNA-seq data, an important challenge is the abundance of zero values, so-called “dropout”, which results in biased estimation of gene-gene correlations for downstream analyses. In recent years, efforts have been made to recover coexpressed genes in scRNA-seq data. Here, our goal is to detect coexpressed gene pairs to reduce the “dropout” effect in scRNA-seq data using a novel graph-based k-partitioning method by merging transcriptomically similar cells. Results: We observed that the number of zero values was reduced among the merged transcriptomically similar cell clusters. Motivated by this observation, we leveraged a graph-based algorithm and develop an R package, scCorr, to recover the missing gene-gene correlation in scRNA-seq data that enables the reliable acquisition of cluster-based gene-gene correlations in three independent scRNA-seq datasets. The graphically partitioned cell clusters did not change the local cell community. For example, in scRNA-seq data from peripheral blood mononuclear cells (PBMCs), the gene-gene correlation estimated by scCorr outperformed the correlation estimated by the nonclustering method. Among 85 correlated gene pairs in a set of 100 clusters, scCorr detected 71 gene pairs, while the nonclustering method detected only 4 pairs of a dataset from PBMCs. The performance of scCorr was comparable to those of three previously published methods. As an example of downstream analysis using scCorr, we show that scCorr accurately identified a known cell type (i.e., CD4+ T cells) in PBMCs with a receiver operating characteristic area under the curve of 0.96. Conclusions: Our results demonstrate that scCorr is a robust and reliable graph-based method for identifying correlated gene pairs, which is fundamental to network construction, gene-gene interaction, and cellular omic analyses. scCorr can be quickly and easily implemented to minimize zero values in scRNA-seq analysis and is freely available at https://github.com/CBIIT-CGBB/scCorr.

Original languageEnglish (US)
Article number35
JournalBMC Genomics
Volume23
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Fingerprint

Dive into the research topics of 'A novel graph-based k-partitioning approach improves the detection of gene-gene correlations by single-cell RNA sequencing'. Together they form a unique fingerprint.

Cite this