A novel thermodynamic relationship based on Kramers theory for studying enzyme kinetics under high viscosity

Khawar Sohail Siddiqui, Saleem Ahmed Bokhari, Ahmed Jawaad Afzal, Surjit Singh

Research output: Contribution to journalArticlepeer-review

Abstract

In most studies of enzyme kinetics it has been found sufficient to use the classical Transition State Theory (TST) of Eyring and others. This theory was based on the solvent being an ideal dilute substance treated as a heat bath. However, enzymes found in organisms adapted to very low (psychrophiles) and very high (thermophiles) temperatures are also subjected to variable solute concentrations and viscosities. Therefore, the TST may not always be applicable to enzyme reactions carried out in various solvents with viscosities ranging from moderate to very high. There have been numerous advances in the theory of chemical reactions in realistic non-ideal solvents such as Kramers Theory. In this paper we wish to propose a modified thermodynamic equation, which have contributions from kcat, Km and the viscosity of the medium in which the enzyme reaction is occurring. These could be very useful for determining the thermodynamics of enzymes catalyzing reactions at temperature extremes in the presence of substrate solutions of different compositions and viscosities.

Original languageEnglish (US)
Pages (from-to)403-407
Number of pages5
JournalIUBMB Life
Volume56
Issue number7
DOIs
StatePublished - Jul 2004

Keywords

  • Extremophiles
  • Psychrophilic
  • Thermophilic
  • Transition State Theory
  • Viscosity

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Genetics
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'A novel thermodynamic relationship based on Kramers theory for studying enzyme kinetics under high viscosity'. Together they form a unique fingerprint.

Cite this