Abstract
In this work, a non-intrusive pressure reconstruction method based on particle image velocimetry (PIV) is utilized to investigate hydroelastic phenomena associated with the water entry of flexible structures. Experiments are conducted on flexible cantilevered wedges entering the water in free fall. PIV is leveraged to evaluate the effect of the mutual interaction between the fluid flow and structural deformation on the distributed hydrodynamic loading. The wedge compliance is found to strongly influence the hydrodynamic loading, resulting into marked oscillations in the distribution and evolution of the pressure on the wetted surface of the impacting body.
Original language | English (US) |
---|---|
Pages (from-to) | 180-185 |
Number of pages | 6 |
Journal | Procedia Engineering |
Volume | 88 |
DOIs | |
State | Published - 2014 |
Event | 1st International Symposium on Dynamic Response and Failure of Composite Materials, DRaF 2014 - Ischia, Naples, Italy Duration: Sep 14 2014 → Sep 17 2014 |
Keywords
- Hydroelasticity
- Particle image velocimetry
- Slamming
- Water entry
ASJC Scopus subject areas
- General Engineering