Abstract
We consider the partitioning of a problem on a domain with unequal work estimates in different subdomains in a way that balances the workload across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. We use a binary decomposition of the domain to partition it into rectangles requiring equal computational effort. We then study the communication costs of mapping this partitioning onto different multiprocessors: a mesh-connected array, a tree machine, and a hypercube. The communication cost expressions can be used to determine the optimal depth of the above partitioning.
Original language | English (US) |
---|---|
Pages (from-to) | 570-580 |
Number of pages | 11 |
Journal | IEEE Transactions on Computers |
Volume | C-36 |
Issue number | 5 |
DOIs | |
State | Published - May 1987 |
ASJC Scopus subject areas
- Software
- Theoretical Computer Science
- Hardware and Architecture
- Computational Theory and Mathematics