TY - JOUR
T1 - A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits
AU - Kiontke, Karin C.
AU - Félix, Marie Anne
AU - Ailion, Michael
AU - Rockman, Matthew V.
AU - Braendle, Christian
AU - Pénigault, Jean Baptiste
AU - Fitch, David H A
N1 - Funding Information:
We are very grateful to all sample collectors and strain contributors listed in Additional Files 7 and 10, as well as all those who participated in our travels. We thank Asher Cutter and Erich Schwarz for making unpublished data available to us. Funding NSF grants DEB0922012 and IOB0643047 were awarded to DHAF. MAF, CB and JBP were supported by the CNRS which included a Nouragues Station grant (Program 2009) to MAF and CB. MA was supported by a Helen Hay Whitney Postdoctoral Fellowship and by NIH grant K99MH082109. MVR was supported by NIH R01 GM089972 and an Ellison Foundation New Scholar Award. KK was partially supported by a supplement to NIH NHGRI modENCODE grant 5U01HG004276-04 to Fabio Piano (New York University).
PY - 2011
Y1 - 2011
N2 - Background: The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. Results: Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp. 8 to the Eastern United States. Conclusions: Caenorhabditis are "fruit worms", not soil nematodes. The 16 new species provide a resource and their phylogeny offers a framework for further studies into the evolution of genomic and phenotypic characters.
AB - Background: The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. Results: Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp. 8 to the Eastern United States. Conclusions: Caenorhabditis are "fruit worms", not soil nematodes. The 16 new species provide a resource and their phylogeny offers a framework for further studies into the evolution of genomic and phenotypic characters.
UR - http://www.scopus.com/inward/record.url?scp=81355149268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81355149268&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-11-339
DO - 10.1186/1471-2148-11-339
M3 - Article
C2 - 22103856
AN - SCOPUS:81355149268
SN - 1471-2148
VL - 11
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 339
ER -