A Point-Process Approach for Tracking Valence using a Respiration Belt

Revanth Reddy, Saman Khazaei, Rose T. Faghih

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Emotional valence is difficult to be inferred since it is related to several psychological factors and is affected by inter- and intra-subject variability. Changes in emotional valence have been found to cause a physiological response in respiration signals. In this study, we propose a state-space model and decode the valence by analyzing a person's respiration pattern. Particularly, we generate a binary point process based on features that are indicative of changes in respiration pattern as a result of an emotional valence response. High valence is typically associated with faster and deeper breathing. As a result, (i)depth of breath, (ii)rate of respiration, and (iii) breathing cycle time are indicators of high valence and used to generate the binary point process representing underlying neural stimuli associated with changes in valence. We utilize an expectation-maximization (EM) framework to decode a hidden valence state and the associated valence index. This predicted valence state is compared to self-reported valence ratings to optimize the parameters and determine the accuracy of the model. The accuracy of the model in predicting high and low valence events is found to be 77% and 73%, respectively. Our study can be applied towards the long term analysis of valence. Additionally, it has applications in a closed-loop system procedures and wearable design paradigm to track and regulate the emotional valence.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A Point-Process Approach for Tracking Valence using a Respiration Belt'. Together they form a unique fingerprint.

Cite this