A Rollover Strategy for Wrist Damage Reduction in a Forward Falling Humanoid

Dongdong Liu, Yuhang Lin, Vikram Kapila

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The last few years have witnessed an increasing interest in the use of humanoid robots for diverse technological applications. Since the center of mass (CoM) of a typical humanoid lies at a relatively high elevation, such a robot often experiences instability during its operation and has a high likelihood of fall. Thus, it is necessary to endow these robots with a robust method to reduce damage that may result from the impact of a fall. Prior research on humans undergoing a forward fall has revealed that the deployment of a rollover strategy along the longitudinal axis can lower the impact force experienced on the hand to effectively reduce wrist injuries. Yet, analogous research for humanoids has received scant attention. To address this research gap, in this work, we consider the optimal design, implementation, and examination of a rollover strategy-similar to the one for humans-for a humanoid robot by employing a differential dynamic programming (DDP) approach. In addition to providing an overview of the theoretical formulation of our methodology, using results from repeated forward falling experiments with a humanoid, we demonstrate that a reliable application of the rollover strategy considerably reduces the impact force vis-à-vis the bimanual fall approach, to protect the wrist of our robot. Moreover, the experiments showcase that the proposed method is also effective in reducing the impact on the torso of the humanoid. With the use of the rollover methodology, a typical humanoid can overcome a key obstacle to its broad adoption and deployment in real-world applications.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Mechatronics and Automation, ICMA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages293-300
Number of pages8
ISBN (Electronic)9781665441001
DOIs
StatePublished - Aug 8 2021
Event18th IEEE International Conference on Mechatronics and Automation, ICMA 2021 - Takamatsu, Japan
Duration: Aug 8 2021Aug 11 2021

Publication series

Name2021 IEEE International Conference on Mechatronics and Automation, ICMA 2021

Conference

Conference18th IEEE International Conference on Mechatronics and Automation, ICMA 2021
Country/TerritoryJapan
CityTakamatsu
Period8/8/218/11/21

Keywords

  • Humanoid robot system and modeling
  • methodologies
  • simulation techniques

ASJC Scopus subject areas

  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Control and Optimization

Fingerprint

Dive into the research topics of 'A Rollover Strategy for Wrist Damage Reduction in a Forward Falling Humanoid'. Together they form a unique fingerprint.

Cite this