A self-triggered visual servoing model predictive control scheme for under-actuated underwater robotic vehicles

Shahab Heshmati-Alamdari, Alina Eqtami, George C. Karras, Dimos V. Dimarogonas, Kostas J. Kyriakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a novel Vision-based Nonlinear Model Predictive Control (NMPC) scheme for an under-actuated underwater robotic vehicle. In this scheme, the control loop does not close periodically, but instead a self-triggering framework decides when to provide the next control update. Between two consecutive triggering instants, the control sequence computed by the NMPC is applied to the system in an open-loop fashion, i.e, no state measurements are required during that period. This results to a significant smaller number of requested measurements from the vision system, as well as less frequent computations of the control law, reducing in that way the processing time and the energy consumption. The image constraints (i.e preserving the target inside the camera's field of view), the external disturbances induced by currents and waves, as well as the vehicle's kinematic constraints due to under-actuation, are being considered during the control design. The closed-loop system has analytically guaranteed stability and convergence properties, while the performance of the proposed control scheme is experimentally verified using a small under-actuated underwater vehicle in a test tank.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3826-3831
Number of pages6
ISBN (Electronic)9781479936854, 9781479936854
DOIs
StatePublished - Sep 22 2014
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: May 31 2014Jun 7 2014

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period5/31/146/7/14

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A self-triggered visual servoing model predictive control scheme for under-actuated underwater robotic vehicles'. Together they form a unique fingerprint.

Cite this