A simple and practical solution for characterization of adhesively bonded joints in dissimilar materials

Khaled Shahin, Farid Taheri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Fiber-reinforced polymer (FRP) composites are increasingly used in structural systems, replacing structural steel and aluminum. It is now well established that adhesive bonding is the most efficient mean of joining composites. Unfortunately, analytical models available in the literature offer design equations mainly applicable to balanced adhesive joints; where the two adherends are identical. In many practical applications, however, FRP composites are used (joined) in conjunction with other materials. This paper presents a simplified model that accurately predicts the behaviour of adhesive joints between different adherends. In this model, exponentially small terms are removed from the analytical solution, greatly simplifying the solution. The resulting design equations provide an accurate method of the design and analyzing of adhesive joints. The model applies to single-lap, single-strap and stiffener-plate joints, where shear and peel stresses are present. Furthermore, the model is easily extended to determine the energy release rate in adhesive joints. Results from the analytical model closely agree with finite element results, which are obtained in a fraction of the time and effort required for a non-linear finite element analysis.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE 2007
Pages739-744
Number of pages6
DOIs
StatePublished - 2008
EventASME International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, WA, United States
Duration: Nov 11 2007Nov 15 2007

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume3

Other

OtherASME International Mechanical Engineering Congress and Exposition, IMECE 2007
Country/TerritoryUnited States
CitySeattle, WA
Period11/11/0711/15/07

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'A simple and practical solution for characterization of adhesively bonded joints in dissimilar materials'. Together they form a unique fingerprint.

Cite this