A Single-Mode Dual-Path Buck-Boost Converter with Reduced Inductor Current Across All Duty Cases Achieving 95.58% Efficiency at 1A in Boost Operation

Donghee Cho, Hyungjoo Cho, Sein Oh, Yoontae Jung, Sohmyung Ha, Chul Kim, Minkyu Je

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In mobile devices, there are various functional blocks requiring different voltage levels, which should be generated from a single lithium-ion battery (Fig. 1), and 3.3V is one of the most demanded voltage levels. Since the battery output voltage discharges gradually from 4.2 to 2.9V, it requires a buck-boost converter that addresses the following challenges. 1) Due to ever-increasing load-current $(\mathsf{I}_{\mathsf{LOAD}})$ demands in the mobile device, the conduction loss by the DC resistance (DCR) of the inductor overwhelms other losses, especially when a small-size inductor is used. 2) At large $\mathsf{I}_{\mathsf{LOAD}}$, the battery output voltage decreases due to its internal resistance, making the boost operation more dominant. 3) Due to the controllability of display brightness and processing speed, burst currents are generated, resulting in unpredictable input voltage fluctuations.

Original languageEnglish (US)
Title of host publication2022 IEEE Custom Integrated Circuits Conference, CICC 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665407564
DOIs
StatePublished - 2022
Event43rd Annual IEEE Custom Integrated Circuits Conference, CICC 2022 - Newport Beach, United States
Duration: Apr 24 2022Apr 27 2022

Publication series

NameProceedings of the Custom Integrated Circuits Conference
Volume2022-April
ISSN (Print)0886-5930

Conference

Conference43rd Annual IEEE Custom Integrated Circuits Conference, CICC 2022
Country/TerritoryUnited States
CityNewport Beach
Period4/24/224/27/22

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Single-Mode Dual-Path Buck-Boost Converter with Reduced Inductor Current Across All Duty Cases Achieving 95.58% Efficiency at 1A in Boost Operation'. Together they form a unique fingerprint.

Cite this