A stable and effective learning strategy for trainable greedy decoding

Yun Chen, Victor O.K. Li, Kyunghyun Cho, Samuel R. Bowman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Beam search is a widely used approximate search strategy for neural network decoders, and it generally outperforms simple greedy decoding on tasks like machine translation. However, this improvement comes at substantial computational cost. In this paper, we propose a flexible new method that allows us to reap nearly the full benefits of beam search with nearly no additional computational cost. The method revolves around a small neural network actor that is trained to observe and manipulate the hidden state of a previously-trained decoder. To train this actor network, we introduce the use of a pseudo-parallel corpus built using the output of beam search on a base model, ranked by a target quality metric like BLEU. Our method is inspired by earlier work on this problem, but requires no reinforcement learning, and can be trained reliably on a range of models. Experiments on three parallel corpora and three architectures show that the method yields substantial improvements in translation quality and speed over each base system.

Original languageEnglish (US)
Title of host publicationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
EditorsEllen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii
PublisherAssociation for Computational Linguistics
Pages380-390
Number of pages11
ISBN (Electronic)9781948087841
StatePublished - Jan 1 2020
Event2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium
Duration: Oct 31 2018Nov 4 2018

Publication series

NameProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018

Conference

Conference2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
CountryBelgium
CityBrussels
Period10/31/1811/4/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint Dive into the research topics of 'A stable and effective learning strategy for trainable greedy decoding'. Together they form a unique fingerprint.

Cite this