A Stokesian viscoelastic flow: Transition to oscillations and mixing

Becca Thomases, Michael Shelley, Jean Luc Thiffeault

Research output: Contribution to journalArticlepeer-review

Abstract

To understand observations of low Reynolds number mixing and flow transitions in viscoelastic fluids, we study numerically the dynamics of the Oldroyd-B viscoelastic fluid model. The fluid is driven by a simple time-independent forcing that, in the absence of viscoelastic stresses, creates a cellular flow with extensional stagnation points. We find that at O(1) Weissenberg number, these flows lose their slaving to the forcing geometry of the background force, become oscillatory with multiple frequencies, and show continual formation and destruction of small-scale vortices. This drives flow mixing, the details of which we closely examine. These new flow states are dominated by a single-quadrant vortex, which may be stationary or cycle persistently from cell to cell.

Original languageEnglish (US)
Pages (from-to)1602-1614
Number of pages13
JournalPhysica D: Nonlinear Phenomena
Volume240
Issue number20
DOIs
StatePublished - Oct 1 2011

Keywords

  • Instability
  • Microfluidics
  • Mixing
  • Viscoelasticity

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A Stokesian viscoelastic flow: Transition to oscillations and mixing'. Together they form a unique fingerprint.

Cite this