A three dimensional model of zebrafish swimming

Violet Mwaffo, Sachit Butail, Maurizio Porfiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Zebrafish is becoming an important animal model in preclinical studies for its genetic similarity to humans and ease of use in the laboratory. In recent years, animal experimentation has faced several ethical issues, calling for alternative methods that capitalize on dynamical systems theory. Here, we propose a computational modeling framework to simulate zebrafish swimming in three dimensions (3D) in the form of a coupled system of stochastic differential equations. The model is capable of reproducing the burst-and-coast swimming style of zebrafish, speed modulation, and avoidance of tank boundaries. Model parameters are calibrated on an experimental dataset of zebrafish swimming in 3D and validated by comparing established behavioral measures obtained from both synthetic and experimental data. We show that the model is capable of accurately predicting fish locomotion in terms of the swimming speed and number of entries in different sections of the tank. The proposed model lays the foundations for in-silico experiments of zebrafish neurobehavioral research.

Original languageEnglish (US)
Title of host publicationMechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850701
DOIs
StatePublished - 2016
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume2

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Country/TerritoryUnited States
CityMinneapolis
Period10/12/1610/14/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A three dimensional model of zebrafish swimming'. Together they form a unique fingerprint.

Cite this