TY - JOUR
T1 - A three-point coarse-grained model of five-water cluster with permanent dipoles and quadrupoles
AU - Li, Min
AU - Lu, Wen Cai
AU - Zhang, John Zeng Hui
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant no. 21803034 and Grant no. 11847223), the China Postdoctoral Science Foundation (Grant no. 2018M630746), and the Natural Science Foundation of Shandong Province (Grant no. ZR2019BB013). We thank the Michigan State University High Performance Computation Center and the theoretical and computational materials group of the Qingdao University for providing computer time.
Publisher Copyright:
© the Owner Societies.
PY - 2020/12/7
Y1 - 2020/12/7
N2 - As coarse-grained (CG) studies of large biomolecules increase, developments of reliable CG solvent models become particularly important. In this work, we reduce five water molecules into a three-point CG model with permanent dipole and quadrupole moments. In the CG force field, the modified Morse potential is utilized and an ideal three-water cluster is designed to derive CG-level permanent multipoles. The new CG model is parametrized on the AMOEBA polarizable force field. Various important properties of liquid water are examined to validate the new CG model. Results show that the new CG model can correctly reproduce certain important experimental properties such as density, isothermal compressibility and relative static dielectric permittivity, even better than the existing AA models. Additionally, the CPU tests reveal that the CG model can accelerate molecular dynamics simulations by a factor of 19 compared to the popular AA force field. Compared with the fix-point-charge model widely used in other CG models, the permanent-multipole-based CG model describes more rigid electrostatic attractions. This study also illustrates that the permanent multipole moments contribute a lot to the electrostatic calculations in CG simulation.
AB - As coarse-grained (CG) studies of large biomolecules increase, developments of reliable CG solvent models become particularly important. In this work, we reduce five water molecules into a three-point CG model with permanent dipole and quadrupole moments. In the CG force field, the modified Morse potential is utilized and an ideal three-water cluster is designed to derive CG-level permanent multipoles. The new CG model is parametrized on the AMOEBA polarizable force field. Various important properties of liquid water are examined to validate the new CG model. Results show that the new CG model can correctly reproduce certain important experimental properties such as density, isothermal compressibility and relative static dielectric permittivity, even better than the existing AA models. Additionally, the CPU tests reveal that the CG model can accelerate molecular dynamics simulations by a factor of 19 compared to the popular AA force field. Compared with the fix-point-charge model widely used in other CG models, the permanent-multipole-based CG model describes more rigid electrostatic attractions. This study also illustrates that the permanent multipole moments contribute a lot to the electrostatic calculations in CG simulation.
UR - http://www.scopus.com/inward/record.url?scp=85096887976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096887976&partnerID=8YFLogxK
U2 - 10.1039/d0cp04782a
DO - 10.1039/d0cp04782a
M3 - Article
C2 - 33174895
AN - SCOPUS:85096887976
SN - 1463-9076
VL - 22
SP - 26289
EP - 26298
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 45
ER -