TY - GEN
T1 - A unified current-voltage and charge-voltage model of quasi-ballistic III-nitride HEMTs for RF applications
AU - Li, Kexin
AU - Rakheja, Shaloo
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/8/20
Y1 - 2018/8/20
N2 - III-nitride high electron mobility transistors (HEMTs) are a strong candidate for high-power radio frequency (RF) applications due to their ability to support high breakdown fields, while maintaining a high electron mobility and a high density of the two-dimensional electron gas (2DEG). Analytic device models that are physically motivated and mathematically robust are preferred for circuit simulations. Most prior works have focused on compact models for 111-nitride HEMTs that operate in the drift-diffusive limit, while Ref. [1] presents a threshold-voltage-based compact model for quasi-ballistic gallium nitride (GaN) HEMTs using an empirical channel charge model. In this paper, we present a unified and self-consistent current-voltage (I-V) and capacitance-voltage (C-V) model of III-nitride HEMTs that is valid for quasi-ballistic transport. The terminal charges are used to calculate inter-nodal capacitances ensuring charge conservation in the device. Both I-V and C-V model are validated against numerical TCAD simulations and experimental data of short-channel GaN HEMTs. Effects of fringing charge resulting from bulk and surface traps are also incorporated in the model. Key equations of the dynamic model are presented in Table 1. Details of the static I-V model of III-nitride HEMTs are presented elsewhere by the authors [2], and equations are omitted for brevity.
AB - III-nitride high electron mobility transistors (HEMTs) are a strong candidate for high-power radio frequency (RF) applications due to their ability to support high breakdown fields, while maintaining a high electron mobility and a high density of the two-dimensional electron gas (2DEG). Analytic device models that are physically motivated and mathematically robust are preferred for circuit simulations. Most prior works have focused on compact models for 111-nitride HEMTs that operate in the drift-diffusive limit, while Ref. [1] presents a threshold-voltage-based compact model for quasi-ballistic gallium nitride (GaN) HEMTs using an empirical channel charge model. In this paper, we present a unified and self-consistent current-voltage (I-V) and capacitance-voltage (C-V) model of III-nitride HEMTs that is valid for quasi-ballistic transport. The terminal charges are used to calculate inter-nodal capacitances ensuring charge conservation in the device. Both I-V and C-V model are validated against numerical TCAD simulations and experimental data of short-channel GaN HEMTs. Effects of fringing charge resulting from bulk and surface traps are also incorporated in the model. Key equations of the dynamic model are presented in Table 1. Details of the static I-V model of III-nitride HEMTs are presented elsewhere by the authors [2], and equations are omitted for brevity.
UR - http://www.scopus.com/inward/record.url?scp=85053191549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053191549&partnerID=8YFLogxK
U2 - 10.1109/DRC.2018.8442193
DO - 10.1109/DRC.2018.8442193
M3 - Conference contribution
AN - SCOPUS:85053191549
SN - 9781538630280
T3 - Device Research Conference - Conference Digest, DRC
BT - 2018 76th Device Research Conference, DRC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 76th Device Research Conference, DRC 2018
Y2 - 24 June 2018 through 27 June 2018
ER -