A Value Iteration Approach to Adaptive Optimal Control of Linear Time-Delay Systems

Leilei Cui, Bo Pang, Zhong Ping Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper studies the adaptive optimal control for linear time-delay systems described by delay differential equations (DDEs). A key strategy is to exploit the value iteration (VI) approach to solve the linear quadratic optimal control problem for time-delay systems. However, previous learning-based control methods are all exclusively devoted to discrete-time time-delay systems. In this article, we aim to fill in the gap by developing a learning-based VI approach to solve the infinite-dimensional algebraic Riccati equation (ARE) for continuous-time time-delay systems. One nice feature of the proposed VI approach is that an initial admissible controller is not required to start the algorithm. The efficacy of the proposed methodology is demonstrated by the example of autonomous driving.

Original languageEnglish (US)
Title of host publicationIFAC-PapersOnLine
EditorsHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
PublisherElsevier B.V.
Pages6964-6969
Number of pages6
Edition2
ISBN (Electronic)9781713872344
DOIs
StatePublished - Jul 1 2023
Event22nd IFAC World Congress - Yokohama, Japan
Duration: Jul 9 2023Jul 14 2023

Publication series

NameIFAC-PapersOnLine
Number2
Volume56
ISSN (Electronic)2405-8963

Conference

Conference22nd IFAC World Congress
Country/TerritoryJapan
CityYokohama
Period7/9/237/14/23

Keywords

  • Data-based control
  • time-delay systems

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'A Value Iteration Approach to Adaptive Optimal Control of Linear Time-Delay Systems'. Together they form a unique fingerprint.

Cite this