TY - JOUR
T1 - A variational localized representation calculation of the vibrational levels of the water molecule up to 27 000 cm-1
AU - Bačić, Z.
AU - Watt, D.
AU - Light, J. C.
PY - 1988
Y1 - 1988
N2 - We have calculated variationally highly excited vibrational (J = 0) levels of the water molecule up to ∼ 27 000 cm-1 (relative to the minimum of the potential surface), for a global Sorbie-Murrell-type potential surface. The calculation has been performed in Radau coordinates, using the recently developed DVR-DGB variational approach [Z. Bačić and J. C. Light, J. Chem. Phys. 85, 4594 (1986); 86, 3065 (1987)]. 110 symmetric and 77 antisymmetric vibrational levels have been determined accurately, requiring diagonalization of relatively small Hamiltonian matrices of dimension ∼600. Many of the calculated levels correspond to large amplitude bending vibrations. Nearest neighbor level spacing statistics for the calculated levels above 18 000-20 000 cm-1 conform closely to a Wigner distribution, suggesting classically chaotic behavior in this energy range. Convergence rates of these variational calculations for H2O are comparable to those seen earlier for LiCN/LiNC and HCN/HNC. The DVR-based vibrationally adiabatic approach introduced by Light and Bačić [J. Chem. Phys. 87, 4008 (1987)] has also been tested here. Perturbative inclusion of the nonadiabatic corrections has allowed reliable identification of vibrational (J = 0) levels of H 2O up to 18 000-20 000 cm-1. With this model potential energy surface, reasonable agreement (∼1%) is obtained with experimentally known vibrational states to ∼20 000 cm-1.
AB - We have calculated variationally highly excited vibrational (J = 0) levels of the water molecule up to ∼ 27 000 cm-1 (relative to the minimum of the potential surface), for a global Sorbie-Murrell-type potential surface. The calculation has been performed in Radau coordinates, using the recently developed DVR-DGB variational approach [Z. Bačić and J. C. Light, J. Chem. Phys. 85, 4594 (1986); 86, 3065 (1987)]. 110 symmetric and 77 antisymmetric vibrational levels have been determined accurately, requiring diagonalization of relatively small Hamiltonian matrices of dimension ∼600. Many of the calculated levels correspond to large amplitude bending vibrations. Nearest neighbor level spacing statistics for the calculated levels above 18 000-20 000 cm-1 conform closely to a Wigner distribution, suggesting classically chaotic behavior in this energy range. Convergence rates of these variational calculations for H2O are comparable to those seen earlier for LiCN/LiNC and HCN/HNC. The DVR-based vibrationally adiabatic approach introduced by Light and Bačić [J. Chem. Phys. 87, 4008 (1987)] has also been tested here. Perturbative inclusion of the nonadiabatic corrections has allowed reliable identification of vibrational (J = 0) levels of H 2O up to 18 000-20 000 cm-1. With this model potential energy surface, reasonable agreement (∼1%) is obtained with experimentally known vibrational states to ∼20 000 cm-1.
UR - http://www.scopus.com/inward/record.url?scp=0000604026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000604026&partnerID=8YFLogxK
U2 - 10.1063/1.455163
DO - 10.1063/1.455163
M3 - Article
AN - SCOPUS:0000604026
SN - 0021-9606
VL - 89
SP - 947
EP - 955
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
IS - 2
ER -