A visual-servoing scheme for semi-autonomous operation of an underwater robotic vehicle using an IMU and a laser vision system

George C. Karras, Savvas G. Loizou, Kostas J. Kyriakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a visual servoing control scheme that is applied to an underwater robotic vehicle. The objective of the proposed control methodology is to provide a human operator the capability to move the vehicle without loosing the target from the vision system's field of view. On-line estimation of the vehicle states is achieved by fusing data from a Laser Vision System (LVS) and an Inertial Measurement Unit (IMU) using an asynchronous Unscented Kalman Filter (UKF). A controller designed at the kinematic level, is backstepped into the dynamics of the system, maintaining its analytical stability guarantees. It is shown that the under-actuated degree of freedom is input-to-state stable and an energy based shaping of the user input with stability guarantees is implemented. The resulting control scheme has analytically guaranteed stability and convergence properties, while its applicability and performance are experimentally verified using a small Remotely Operated Vehicle (ROV) in a test tank.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages5262-5267
Number of pages6
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period5/3/105/7/10

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A visual-servoing scheme for semi-autonomous operation of an underwater robotic vehicle using an IMU and a laser vision system'. Together they form a unique fingerprint.

Cite this