TY - JOUR
T1 - Ab initio molecular dynamics investigation of the concentration dependence of charged defect transport in basic solutions via calculation of the infrared spectrum
AU - Zhu, Zhongwei
AU - Tuckerman, Mark E.
PY - 2002/8/22
Y1 - 2002/8/22
N2 - The concentration dependence of the anomalous proton transport mechanism in aqueous KOD solution is studied using ab initio molecular dynamics. A high concentration of 13 M is chosen because of the availability of Raman and infrared spectroscopic data at this concentration. Differences in certain features of these spectra have been interpreted in terms of the so-called "proton hole" picture of the proton transport mechanism in basic solutions. The proton hole mechanism asserts that the charged defect transport in basic solutions follows the same mechanism as in acidic solutions (where the charged defect is H3O+) with all of the hydrogen-bond polarities reversed. By computing the infrared spectrum directly from an ab initio molecular dynamics simulation, we are able to validate our ab initio approach against the experimental data. However, the mechanism of charged defect transport that emerges from the simulation is considerably different from the proton hole mechanism and follows that recently reported by Tuckerman, et al. (Tuckerman, M.E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925). For comparison, a lower concentration, 1.5 M, is also simulated and the transport mechanism compared to the high concentration case. It is found that the mechanisms are similar; however, the mobility of both K+ and OD- is slower at high concentration, a finding that is in keeping with the fact that the molar conductivity of electrolytes decreases with increasing concentration. Other similarities and differences between the two concentrations are highlighted, and a new interpretation of the spectral data is proposed.
AB - The concentration dependence of the anomalous proton transport mechanism in aqueous KOD solution is studied using ab initio molecular dynamics. A high concentration of 13 M is chosen because of the availability of Raman and infrared spectroscopic data at this concentration. Differences in certain features of these spectra have been interpreted in terms of the so-called "proton hole" picture of the proton transport mechanism in basic solutions. The proton hole mechanism asserts that the charged defect transport in basic solutions follows the same mechanism as in acidic solutions (where the charged defect is H3O+) with all of the hydrogen-bond polarities reversed. By computing the infrared spectrum directly from an ab initio molecular dynamics simulation, we are able to validate our ab initio approach against the experimental data. However, the mechanism of charged defect transport that emerges from the simulation is considerably different from the proton hole mechanism and follows that recently reported by Tuckerman, et al. (Tuckerman, M.E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925). For comparison, a lower concentration, 1.5 M, is also simulated and the transport mechanism compared to the high concentration case. It is found that the mechanisms are similar; however, the mobility of both K+ and OD- is slower at high concentration, a finding that is in keeping with the fact that the molar conductivity of electrolytes decreases with increasing concentration. Other similarities and differences between the two concentrations are highlighted, and a new interpretation of the spectral data is proposed.
UR - http://www.scopus.com/inward/record.url?scp=0037158954&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037158954&partnerID=8YFLogxK
U2 - 10.1021/jp020866m
DO - 10.1021/jp020866m
M3 - Article
AN - SCOPUS:0037158954
SN - 1089-5647
VL - 106
SP - 8009
EP - 8018
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 33
ER -